
Software Development for 
Scientists

UCSF Practice of Science Seminars
Peder Larson

February 18, 2020



Key Ingredients for Software Work
1. Languages

a. Capabilities - Project dependent
b. Support

2. Computational Resources
a. Wynton
b. Dedicated hardware
c. Cloud

3. Development Tools
a. Integrated Development Environment (IDE)
b. Best coding practices
c. Version Control

4. Sustainability
a. Documentation
b. Version Control

5. Sharing
a. Distributing code 
b. Free cloud hosting - Binder/colab/Azure
c. Version Control



Languages
One of the first choices to make

Often dictated by type of project

Most Popular

Python - scientific computing and machine learning

R - powerful statistics and visualization

UCSF Library resources (Python, R)

Many many others (web or app development, computational efficiency, CPU vs 
GPU)



Learning to Code
UCSF Library Classes and Resources https://www.library.ucsf.edu/ask-an-expert/data-science/

Software Carpentry https://software-carpentry.org/ “Teaching basic lab skills for research 
computing” Unix, python, R, git

Sample code from labmates or other researchers

Task-based - best to have a goal of something to program to drive learning

https://www.library.ucsf.edu/ask-an-expert/data-science/
https://software-carpentry.org/


Computational Resources
Where are you going to run the code?

● Personal Laptop - easy, flexible, secure (if managed by UCSF IT) but 
resources can be limited

● Personal/lab computer - build in more power and functionality, but likely 
requires more system administration and maintenance

● UCSF On-premise Shared computational resources - even more power and 
functionality, software and libraries often pre-determined by system 
administrators

● Cloud
○ AWS, Azure, Google Cloud.  
○ AWS will provide free credits for project proposals.  For larger work, UC negotiated rates 

available.



UCSF Compute Resources

MyResearch - secure data hosting + multiple software programs (SAS Stata, SPSS, R, Matlab …)

Wynton HPC - high performance computing cluster Free to all UCSF users! https://ucsf-hpc.github.io/wynton/index.html

ARC - “AWS Research Cloud” (pilot)

https://ucsf-hpc.github.io/wynton/index.html


Computational Resources - Storage
Where are you going to store data?

● Personal Laptop - easy, UCSF provided backup via Code42, but limited
● Personal/lab computer - flexible for building up storage space, requires setup 

of dedicated backup and potentially encryption
● UCSF Shared computational resources - can request resources (10gb free on 

MyResearch, 500 GB on Wynton but not backed up)
● Cloud

○ Box - unlimited storage
○ AWS etc



Box tips
Synchronize with Box Sync or Box Drive

Transfer (e.g. backup) large numbers of files via FTP: https://app.box.com/services/box_ftp_server/

Wynton -> Box: https://ucsf-hpc.github.io/wynton/transfers/ucsf-box.html Includes tip for passwordless 
transfer for automatic processes

https://app.box.com/services/box_ftp_server/
https://ucsf-hpc.github.io/wynton/transfers/ucsf-box.html


Notebooks
Interactive Environment for alternating between coding and data output (e.g. 
plotting)

Jupyter Notebooks

Most popular

Support a variety of programming languages (with proper kernels installed)

Anaconda - tool for installing jupyter as well as kernels, libraries, and more



Integrated Development Environment (IDE)
What does it do?

Understands code syntax

build code

testing and debugging

Eclipse - popular 

Xcode - Mac

Atom or Sublime Text

Python

PyCharm

JupyterLab 

R

RStudio



Best Practices/Coding Style
Version Control

Git

Python

PEP 8 -- Style Guide for Python Code

Have your IDE tell you when you are 
conforming to style: 
https://realpython.com/python-pep8/#tips-and-tricks-to-help-e
nsure-your-code-follows-pep-8

Basic Style Tips

● Use Descriptive variable and function 
names

● Modular code (try not to copy/paste! 
instead write a function to repeat this 
operation)

● Unit tests - test key parts of your code with 
simple functions that verify operation or 
output is correct

● Comment code (although with descriptive 
names this is less important)

● Requires extra time, but worthwhile in the 
long-term

https://www.python.org/dev/peps/pep-0008/
https://realpython.com/python-pep8/#tips-and-tricks-to-help-ensure-your-code-follows-pep-8
https://realpython.com/python-pep8/#tips-and-tricks-to-help-ensure-your-code-follows-pep-8


What is git?

● Version control

○ Track changes you make to software or other documents

○ Go back to old versions, or look at changes

● Shared development platform

○ Designed to support projects with multiple developers

○ Create branches, merge and track individual user changes, report and assign issues

● Distributed

○ Every version of the repository, whether local or hosted (e.g. github, Radiology gitlab) is a full 
repository, so access to host required

○ Transition to and from local copy to hosted repository, between hosted sites, and between local 
copies



Why Git?

● Sharing and jointly developing code

● Standard tool for version control & software development, easy to work with others

● Open source and free

● Distributed – every clone/copy of the repository is the same/equivalent.  E.g. work on local copy is 
equivalent, no need to be connected to server.  Repositories can be easily moved between locations

● Jobs

○ Employers may consider your github/gitlab/bitbucket profile as part of your CV for tech jobs

○ Ask any graduate who works on software in industry – they must use version control

● Many Tools

○ e.g. github desktop client, probably many others

○ Web interfaces



Prominent Git Software Groups

● TensorFlow (Google) https://github.com/tensorflow 

● Python https://github.com/python 

● Facebook https://github.com/facebook 

● LinkedIn https://github.com/linkedin 

https://github.com/tensorflow
https://github.com/python
https://github.com/facebook
https://github.com/linkedin


Selected Imaging Repositories/Groups

● SIVIC - https://github.com/SIVICLab/sivic 

● ANTS – Advanced Normalization Tools https://github.com/ANTsX/ANTs 

● AFNI – Analysis of Functional NeuroImages https://github.com/afni/afni 

● ISMRMRD – ISMRM raw data format

● BART – Berkeley advanced reconstruction toolbox 
https://github.com/mrirecon/bart 

● Many more!

https://github.com/SIVICLab/sivic
https://github.com/ANTsX/ANTs
https://github.com/afni/afni
https://github.com/mrirecon/bart


Git Terminology

● Repository - a set of code and other digital materials grouped together.  
Main grouping

● Branch - different versions of the repository, used for adding features, fixing 
bugs, or specialized versions.  Main branch is the ‘master’

● Clone - make a copy of the repository
● Checkout - select a certain branch of the repository
● Commit - add changes into the repository
● Pull - get changes from a remote repository (e.g. GitHub -> your computer)
● Push - put changes into a remote repository (e.g. your computer -> GitHub)
●



Git Servers and Structure

● github.com

○ Most widely used service

○ Public and private repositories (“Repos”)

○ Request academic account for free upgrade to Pro account – https://education.github.com/

○ Free website hosting with GitHub Pages https://pages.github.com/

○ Good template: https://academicpages.github.io/

● UCSF GitHub Enterprise https://git.ucsf.edu/  - in early testing phase, more coming soon

● GitLab - popular alternative, similar features, including academic accounts with good benefits: 
https://about.gitlab.com/solutions/education/

● Individual accounts

● Groups – for groups with multiple shared projects, e.g. lab/research group, specific project/grant, organization

https://education.github.com/
https://academicpages.github.io/
https://git.ucsf.edu/
https://about.gitlab.com/solutions/education/


My Personal Git Ecosystem

● Radiology git

○ plarson - personal account, for my own 
projects or initial development

■ matlab

■ EPSI processing

○ EPIC-MRI – group account for GE MRI 
EPIC programming projects (so far I’m the 
only user ☺ )

■ 3dradial

■ prose_prostate

■ fidcsi_c13

■ 3dute

■ cones

● GitHub.com

○ agentmess – personal account, personal projects, 
papers, playing around with code

○ LarsonLab – group account for shared projects and 
sustained projects

■ hyperpolarized-mri-toolbox

■ mripy (Python tools for MRI, including neural 
networks, originally from Peng Cao)

■ Spectral-Spatial-RF-Pulse-Design

■ MRI-education-resources

○ UCSF-EPIC-MRI

■ For sharing EPIC software with others

■ All private repositories (GE proprietary 
information)

Moving these 
to private git 
repos on 
GitHub.com



GitHub/GitLab features

● Star – any interesting code

● Watch – be notified of repo changes

● Fork – make your own copy to use and modify



Remember to …

● Commit every day!

● Practice, and don’t worry about mistakes since there’s a history of all your 
changes



Initialization

1. Login – git.radiology.ucsf.edu or github.com

2. Create New Repository/Project

3. Clone ‘git clone <address>’ 

○ Copy address from web

○ Clone to multiple places (laptop, SCS network) - I love this workflow to move between coding on 
my laptop and moving to shared computational resources

4. Add files or import in existing directory

5. Check file status ‘git status’, should show Untracked Files

6. Add these files to git repository with ‘git add’

7. Check file status ‘git status’, should show Changes to Be Committed

8. Commit ’git commit –m “<commit message>” ‘

9. Push changes to remote repository (e.g. github, radiology git) ‘git push’

10. Check web!



Daily Workflow

1. Pull changes from remote repo (in case others have added edits) ‘git pull’

○ If you are just a user (not developer) of repo/project, then this is all you need

2. Modify files

3. Check status ‘git status’

4. Add changes ‘git add’

5. Confirm status ‘git status’

6. Commit ‘git commit’

7. Push changes ‘git push’ (don’t need to do for every commit, but at least every day is best)

● Quick commit – ‘git commit –a –m <message>” stages all changes to be commited and then commits



Advanced Workflows - ignoring files

● .gitignore – this is a file within your git repository that can choose to ignore 
certain files.  For example, large data files, temporary files, executables.  

○ .gitignore templates at https://github.com/github/gitignore for templates for many programming 
languages

○ Copy into main directory

○ In GitHub Desktop app, right-click to add files to .gitignore

● Want to store large files? 

○  Use “git-lfs” (large file storage) git-lfs.github.com 

https://github.com/github/gitignore


Advanced Workflows - Branching

●  “Branch”

○ separate version of repository to work on

○ Create a branch to fix a bug, add a new feature, or play around without disrupting the “master” 
branch (default branch when you start a project

○ Easy to explore and visualize via web interfaces

○ First branch created is the “master”



Advanced Workflows – Creating and Editing New 
Branch
Via Web interface

Then switch to branch in repository

1. List all branches ‘git branch –a’

2. Checkout new branch ‘git checkout <branchname>’

3. Confirm you are now working on new branch ‘git branch’

Or Command Line

1. Check current branch ‘git branch -a’ (lists branches, * indicated curent branch_

2. Switch to starting branch if needed, e.g. ‘git checkout master’ to create branch from master 

3. Create new branch ‘git branch <branchname>’

4. Checkout new branch ‘git checkout <branchname>’

5. Confirm you are now working on new branch ‘git branch’



Advanced Workflows – Creating and Editing New 
Branch
▪ Normally, a repository is a single directory and you can switch between branches (‘git 

branch’ to view branches, ‘git checkout <branchname>’ to switch)

▪ This can cause problems if you (like me) forget to check what branch you are working on

▪ Alternative

▪ Keep one repository as a ‘master’ 

● git clone git@git.radiology.ucsf.edu:PLarson/git-tutorial-test.git git-tutorial-test_master

▪ Clone another version of repo for development(more like SVN)

● git clone git@git.radiology.ucsf.edu:PLarson/git-tutorial-test.git git-tutorial-test_branch

● cd git-tutorial-test_branch

● git checkout <branchname>



Advanced Workflows – Merging Branches

● Create a Merge/pull request
○ When you want to put branches together, merge the changes
○ E.g. you have added feature in a feature branch, merge back into the master 

branch
○ I find this easiest via web interfaces

● When you push changes ‘git push’, message:
○ remote: To create a merge request for branch2, visit:
○ remote:   

https://git.radiology.ucsf.edu/PLarson/git-tutorial-test/merge_requests/new?merge
_request%5Bsource_branch%5D=branch2

● Review and submit merge request
● Confirm request and submit (last steps are so you can review the changes carefully 

before continuing)



Fixing conflicts

Can arise when remote repo is out of sync with local copy, or during merging of 
branches

1. Find conflicting files ‘git status’

2. Edit with your favorite editor

○ Conflicting lines marked with <<<<, ====, >>>>

○ Choose appropriate changes, remove lines with <<<<, ====, >>>>

3. Mark resolution with ‘git add’

4. Commit

5. Push



Advanced Workflows - Other

● Multiple Remote Repos (e.g. github vs radiology git)

○ Can sync local copy with both

○ Move repository to other location

1. Create empty repository

2. Add as a remote ‘git remote add github https://github.com/agentmess/git-tutorial-test.git’  (can 
change “github” to be description of another remote repository, use ”origin” if you want to make 
this the new default repository )

3. Push to new remote ‘git push --all github’ 

https://github.com/agentmess/git-tutorial-test.git


Advanced Workflows - Other

● Tags/releases

○ When you’ve got a stable product

○ Allows others to easily find stable version or version that will work for them

● Issues

○ Keep track of bugs to fix or features to add



Remember to …

● Commit every day!

● Practice, and don’t worry about mistakes since there’s a history of all your 
changes

● git on it

● git your roll on

● git ‘er done

● everybody git together



Sharing Code and Data
GitHub or GitLab - share repositories (public, or private shared to specific users), 
build up your user profile (good for CV), enables community development

License - Recommended MIT + Creative Commons License is the reproducible 
research standard

Zenodo - get digital object identifier (DOI)

Available for citing code (easy integration with GitHub) 
https://zenodo.org/account/settings/github/ 

Available for citing datasets too, example: https://zenodo.org/record/3647820#.XkxtFmhKguU

Run your code online: Google Colab, Binder, and more

https://zenodo.org/account/settings/github/
https://zenodo.org/record/3647820#.XkxtFmhKguU


Live Notebooks
Google Colab: free, python-based, good GPU resources, files and code loaded 
through Google Drive

Demo: https://colab.research.google.com/github/mikgroup/extreme_mri/blob/master/colab-demo.ipynb

Binder: free, (Project Jupyter), flexible languages, resources also from Google 
Cloud, can link to GitHub repository as well as other sources

Demo:https://github.com/LarsonLab/hyperpolarized-mri-toolbox https://github.com/LarsonLab/MRI-education-resources

Distill journal https://distill.pub/

JupyterBook example https://qmrlab.org/t1_book/intro.html

https://colab.research.google.com/github/mikgroup/extreme_mri/blob/master/colab-demo.ipynb
https://github.com/LarsonLab/hyperpolarized-mri-toolbox
https://github.com/LarsonLab/MRI-education-resources
https://distill.pub/
https://qmrlab.org/t1_book/intro.html


Final Thoughts
● Invest in software skills such as version control, good coding style (e.g. 

modular code), good IDE, utilize available software & hardware resources
● UCSF compute & storage resources are evolving rapidly, pay attention to take 

advantage of latest offerings
● Share your code, from your own labmates to across the world

○ Take the time to help others use your code, this makes your work more impactful
○ Take the time to work with other’s code, this makes all of our work more sustainable
○ Contribute to open-source initiatives

● Live and hosted notebooks are a powerful tool to share your work, enable 
others to use your code, and support reproducible research

● Did I mention Version Control?


